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Motivation

• Power-gating causes state loss
• Once reactivated the core faces longer execution time due to cache misses and 

branch mispredicts
• The magnitude of this effect depends on the application (state reusability among 

requests)
• Idle governors do not consider this overhead before transitioning to deep sleep 
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Why can Cold-Start Latency affect 
Microservices?
1. Microservices operate at low utilizations (5%-20% [Luo_2021])

2. Microservices have strict QoS constraints (< 1ms)

⎻ Sensitive to killer microsecond overheads

⎻ Previous works have estimated cold start to be in the order of μs [Arora_2015]

3. A query executes on multiple services running on different cores 

⎻ Idle governors have local visibility (core) 

⎻ A query might experience cold-start latency multiple times during its lifetime
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Goal

• Quantify the impact of cold-start latency on the performance of 

microservices

• Redesign the AW architecture to have the following characteristics:

⎻  Fast transition and cold-start latency – similar to shallow sleep states i.e., C1

⎻ Significant power savings – similar to deep sleep states i.e., C6
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Sources of Performance Degr. for Deep Sleep States

• Transition Latency (C6A): Time required to transition from an active state to 
an idle state and vice versa 

⎻ Examples of steps included: turn on/off VR/PLL, flush L1/L2 cache
⎻ Depends both on architecture choices and workload characteristics
⎻ Hardware Round Trip Time

• Cold-Start Latency (C6Awarm): Warm-up time of core data arrays (i.e., 
caches, branch predictor)

⎻ We focus on cold-start latency caused by power gating
⎻ Depends on workload and specifically reusability of 

state among queries 
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Interplay of Core C-states Overhead with Core Components
Transition Latency Cold-Start Latency

Architectural

Caches DL1, L2, DTLB, STLB IL1, Uop$, DL1, L2, ITLB, 
DTLB, STLB

Context Control Registers, Patch RAM, 
microcode

Non-Architectural Branch Prediction, BTB, 
RAS, IJB, Prefetcher

PDN, Clock PLL, FIVR, CLOCK
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• All transition latency resources are architectural
• All cold-start latency resources are non-architectural
• There is a subset of resources that affect both categories
• The taxonomy reveals the resources:

o The state of which must be preserved when power-gating (architectural)
o The state of which must be preserved only if it affects significantly the performance (non-architectural)



Experimental Methodology

• Workloads: We quantify cold-start latency using Memcached and MicroSuite

• Scenarios: We use two scenarios to quantify the worst-case cold-start latency 
⎻ Warm: All queries execute on warm resources
⎻ Cold: All queries execute on cold resources(C6) 

• Tools: We use performance counters and Top-Down Analysis
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Cold-Start Latency Impact (1)
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Cold-Start Latency Impact (2)
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Top-Down Analysis of an application running on cold (power-gated) and 
warm resources (power-ungated)
• Cold-Start latency affects the performance of a microservice (25%-126%)
• Frontend Bound and Bad Speculation are the categories with the highest 

impact
• To eliminate this overhead, frontend resources must be ON



C6Awarm Architecture

C-State Clocks ADPLL L1/L2 Cache Voltage Context

C6Awarm Most Stopped On Coherent PG/Ret/Nom Maintained

C-State Transition 
Time

Residency 
Time

Power per 
core

C0(P1) N/A N/A ~4W

C0(Pn) N/A N/A ~1W

C1(P1) 2μs 2μs 1.44W

C6Awarm(P1) 2μs 2μs ~0.35W

C1E(Pn) 10μs 20μs 0.88W

C6AwarmE(P
n) 10μs 20μs ~0.27W

C6 133μs 600μs ~0.1W



Power Savings and Overheads at Varying Loads
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• C6Awarm/C6AwarmE at varying loads
• Client-side performance degradation < 0.25%
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Power Savings and Overheads at Varying Loads
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• C6Awarm/C6AwarmE at varying loads
• Client-side performance degradation < 0.25%.
• Server-side performance degradation < 2%.
• End-to-End dominated by network latency.
• Power savings reach up to 50% for low qps and ~12% for high



Summary
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• Cold-start latency significantly affects the performance of microservices (25%-
126%)

• C6Awarm: first core C-state architecture that targets both the transition latency 
and cold effect latency

• C6Awarm employs the same techniques as AgileWatts to mitigate the transition 
latency of C-states. Additionally, C6Awarm keeps the frontend of the core ON and 
in retention mode to eliminate the cold effect latency and maintain the power 
savings of deep idle states

• Our evaluation shows that C6Awarm can reduce the energy consumption 
significantly with minimal performance overhead compared to baseline(only C1 
C-state enabled)


