
# AgileWatts: C6Awarm

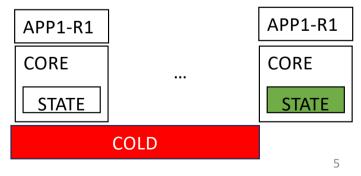
## Motivation

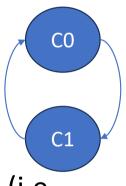


- Power-gating causes state loss
- Once reactivated the core faces longer execution time due to cache misses and branch mispredicts
- The magnitude of this effect depends on the application (state reusability among requests)
- Idle governors do not consider this overhead before transitioning to deep sleep states

## Why can Cold-Start Latency affect Microservices?

- 1. Microservices operate at low utilizations (5%-20% [Luo\_2021])
- 2. Microservices have strict QoS constraints (< 1ms)
  - Sensitive to killer microsecond overheads
  - Previous works have estimated cold start to be in the order of μs [Arora\_2015]
- 3. A query executes on multiple services running on different cores
  - Idle governors have local visibility (core)
  - A query might experience cold-start latency multiple times during its lifetime


## Goal


 Quantify the impact of cold-start latency on the performance of microservices

- Redesign the AW architecture to have the following characteristics:
  - Fast transition and cold-start latency similar to shallow sleep states i.e., C1
  - Significant power savings similar to deep sleep states i.e., C6

### Sources of Performance Degr. for Deep Sleep States

- Transition Latency (C6A): Time required to transition from an active state to an idle state and vice versa
  - Examples of steps included: turn on/off VR/PLL, flush L1/L2 cache
  - Depends both on architecture choices and workload characteristics
  - Hardware Round Trip Time
- Cold-Start Latency (C6Awarm): Warm-up time of core data arrays (i.e., caches, branch predictor)
  - We focus on cold-start latency caused by power gating
  - Depends on workload and specifically reusability of state among queries





|  | Transition Latency | Cold-Start Latency |
|--|--------------------|--------------------|
|  |                    | -                  |
|  |                    |                    |
|  |                    |                    |
|  |                    |                    |
|  |                    |                    |
|  |                    |                    |
|  |                    |                    |

|               |         | Transition Latency | Cold-Start Latency |
|---------------|---------|--------------------|--------------------|
| Architectural | Caches  |                    |                    |
|               | Context |                    |                    |
|               |         |                    |                    |
|               |         |                    |                    |

|                   |         | Transition Latency | Cold-Start Latency |
|-------------------|---------|--------------------|--------------------|
| Architectural     | Caches  |                    |                    |
|                   | Context |                    |                    |
| Non-Architectural |         |                    |                    |
|                   |         |                    |                    |

|                   |         | Transition Latency | Cold-Start Latency |
|-------------------|---------|--------------------|--------------------|
| Architectural     | Caches  |                    |                    |
|                   | Context |                    |                    |
| Non-Architectural |         |                    |                    |
| PDN, Clock        |         |                    |                    |

|                   |         | Transition Latency                         | Cold-Start Latency                                      |
|-------------------|---------|--------------------------------------------|---------------------------------------------------------|
| Architectural     | Caches  | <u>DL1, L2, DTLB, STLB</u>                 | IL1, Uop\$, <u>DL1, L2, I</u> TLB,<br><u>DTLB, STLB</u> |
|                   | Context | Control Registers, Patch RAM,<br>microcode |                                                         |
| Non-Architectural |         |                                            | Branch Prediction, BTB,<br>RAS, IJB, Prefetcher         |
| PDN, Clock        |         | PLL, FIVR, CLOCK                           |                                                         |

|                   |         | Transition Latency                         | Cold-Start Latency                                      |
|-------------------|---------|--------------------------------------------|---------------------------------------------------------|
| Architectural     | Caches  | <u>DL1, L2, DTLB, STLB</u>                 | IL1, Uop\$, <u>DL1, L2, </u> ITLB,<br><u>DTLB, STLB</u> |
|                   | Context | Control Registers, Patch RAM,<br>microcode |                                                         |
| Non-Architectural |         |                                            | Branch Prediction, BTB,<br>RAS, IJB, Prefetcher         |
| PDN, Clock        |         | PLL, FIVR, CLOCK                           |                                                         |

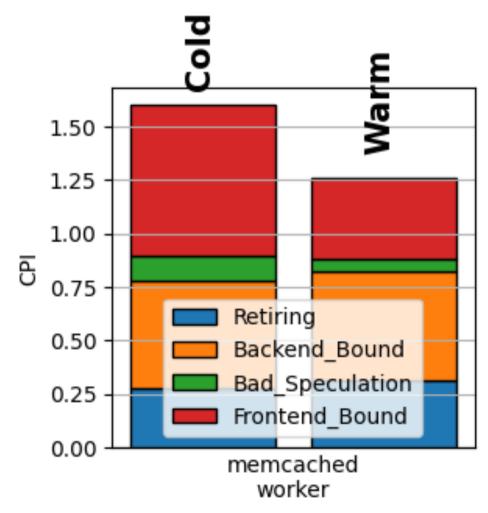
• All transition latency resources are architectural

|                   |         | Transition Latency                         | Cold-Start Latency                                      |
|-------------------|---------|--------------------------------------------|---------------------------------------------------------|
| Architectural     | Caches  | <u>DL1, L2, DTLB, STLB</u>                 | IL1, Uop\$, <u>DL1, L2, </u> ITLB,<br><u>DTLB, STLB</u> |
|                   | Context | Control Registers, Patch RAM,<br>microcode |                                                         |
| Non-Architectural |         |                                            | Branch Prediction, BTB,<br>RAS, IJB, Prefetcher         |
| PDN, Clock        |         | PLL, FIVR, CLOCK                           |                                                         |

- All transition latency resources are architectural
- All cold-start latency resources are non-architectural

|                   |         | Transition Latency                         | Cold-Start Latency                                      |
|-------------------|---------|--------------------------------------------|---------------------------------------------------------|
| Architectural     | Caches  | <u>DL1, L2, DTLB, STLB</u>                 | IL1, Uop\$, <u>DL1, L2, </u> ITLB,<br><u>DTLB, STLB</u> |
|                   | Context | Control Registers, Patch RAM,<br>microcode |                                                         |
| Non-Architectural |         |                                            | Branch Prediction, BTB,<br>RAS, IJB, Prefetcher         |
| PDN, Clock        |         | PLL, FIVR, CLOCK                           |                                                         |

- All transition latency resources are architectural
- All cold-start latency resources are non-architectural
- There is a subset of resources that affect both categories


|                   |         | Transition Latency                         | Cold-Start Latency                                      |
|-------------------|---------|--------------------------------------------|---------------------------------------------------------|
| Architectural     | Caches  | <u>DL1, L2, DTLB, STLB</u>                 | IL1, Uop\$, <u>DL1, L2, </u> ITLB,<br><u>DTLB, STLB</u> |
|                   | Context | Control Registers, Patch RAM,<br>microcode |                                                         |
| Non-Architectural |         |                                            | Branch Prediction, BTB,<br>RAS, IJB, Prefetcher         |
| PDN, Clock        |         | PLL, FIVR, CLOCK                           |                                                         |

- All transition latency resources are architectural
- All cold-start latency resources are non-architectural
- There is a subset of resources that affect both categories
- The taxonomy reveals the resources:
  - The state of which must be preserved when power-gating (architectural)
  - The state of which must be preserved only if it affects significantly the performance (non-architectural)


## Experimental Methodology

- <u>Workloads</u>: We quantify cold-start latency using Memcached and MicroSuite
- <u>Scenarios</u>: We use two scenarios to quantify the worst-case cold-start latency
  - Warm: All queries execute on warm resources
  - Cold: All queries execute on cold resources(C6)
- <u>Tools:</u> We use performance counters and Top-Down Analysis

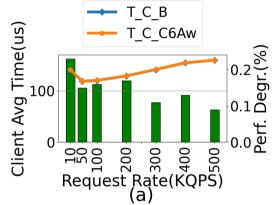
### Cold-Start Latency Impact (1)



## Cold-Start Latency Impact (2)

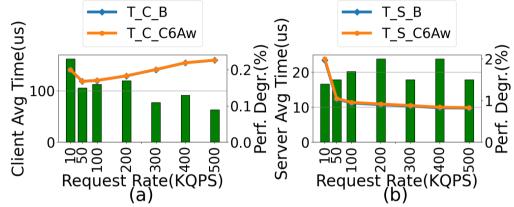


Top-Down Analysis of an application running on cold (power-gated) and warm resources (power-ungated)


- Cold-Start latency affects the performance of a microservice (25%-126%)
- Frontend Bound and Bad Speculation are the categories with the highest impact
- To eliminate this overhead, frontend resources must be ON

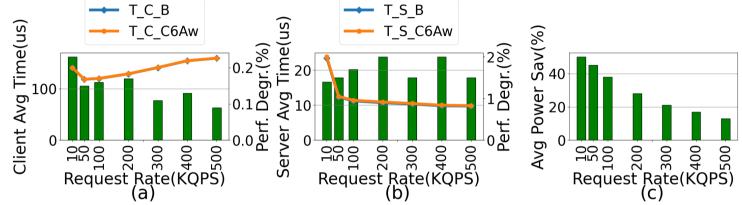
## C6Awarm Architecture

| L3 Cache                                          | C-State          | Transition<br>Time | Residency<br>Time | Power per<br>core |
|---------------------------------------------------|------------------|--------------------|-------------------|-------------------|
| (1.375MB) (Snoop<br>Filter) (Converged mesh stop) | C0(P1)           | N/A                | N/A               | ~4W               |
|                                                   | C0(Pn)           | N/A                | N/A               | ~1W               |
| L1D ZOOND LZ                                      | C1(P1)           | 2μs                | 2µs               | 1.44W             |
| 768KB L2                                          | C6Awarm(P1)      | 2µs                | 2µs               | ~0.35W            |
|                                                   | C1E(Pn)          | 10µs               | 20µs              | 0.88W             |
| L11 & ADPLL                                       | C6AwarmE(P<br>n) | 10µs               | 20µs              | ~0.27W            |
| EVR.                                              | С6               | 133µs              | 600µs             | ~0.1W             |


| C-State | Clocks       | ADPLL | L1/L2 Cache | Voltage    | Context    |
|---------|--------------|-------|-------------|------------|------------|
| C6Awarm | Most Stopped | On    | Coherent    | PG/Ret/Nom | Maintained |

## Power Savings and Overheads at Varying Loads




- C6Awarm/C6AwarmE at varying loads
  - Client-side performance degradation < 0.25%

### Power Savings and Overheads at Varying Loads



- C6Awarm/C6AwarmE at varying loads
  - Client-side performance degradation < 0.25%
  - Server-side performance degradation < 2%
  - End-to-End dominated by network latency

## Power Savings and Overheads at Varying Loads



- C6Awarm/C6AwarmE at varying loads
  - Client-side performance degradation < 0.25%.
  - Server-side performance degradation < 2%.
  - End-to-End dominated by network latency.
  - Power savings reach up to 50% for low qps and ~12% for high

## Summary

- Cold-start latency significantly affects the performance of microservices (25%-126%)
- C6Awarm: first core C-state architecture that targets both the transition latency and cold effect latency
- C6Awarm employs the same techniques as AgileWatts to mitigate the transition latency of C-states. Additionally, C6Awarm keeps the frontend of the core ON and in retention mode to eliminate the cold effect latency and maintain the power savings of deep idle states
- Our evaluation shows that C6Awarm can reduce the energy consumption significantly with minimal performance overhead compared to baseline(only C1 C-state enabled)